Gallery
ALFA.gallery.Laplace
ALFA.gallery.curlcurl
ALFA.gallery.curlcurl_restriction
ALFA.gallery.fw_restriction
ALFA.gallery.graphene_dirac_restriction
ALFA.gallery.graphene_tight_binding
ALFA.gallery.Laplace
— MethodLaplace(;N = 2, h=1, T = Float64)
Creates a CrystalOperator corresponding to the (central differences) discretization of the Laplace operator $Δ=\sum_j \frac{\partial^2}{\partial x_j^2}$in N dimensions.
- h corresponds to the distance of the grid points.
ALFA.gallery.curlcurl
— Functioncurlcurl(sigma; T=Float64)
Creates the curlcurl operator. See [Section 6.2, 1] Kahl, K., Kintscher, N. Automated local Fourier analysis (ALFA). Bit Numer Math (2020). https://doi.org/10.1007/s10543-019-00797-w
ALFA.gallery.curlcurl_restriction
— Methodcurlcurl_restriction(sigma; T=Float64)
Creates the restriction operator corresponding to the curl curl operator. See [Section 6.2, 1] Kahl, K., Kintscher, N. Automated local Fourier analysis (ALFA). Bit Numer Math (2020). https://doi.org/10.1007/s10543-019-00797-w
ALFA.gallery.fw_restriction
— Methodfw_restriction(;m=1, N = 2, T = Float64)
Full weighting restriction operator in N dimensions.
ALFA.gallery.graphene_dirac_restriction
— Methodgraphene_dirac_restriction(;t = nothing, T=Float64)
Creates a restriction CrystalOperator that conserveres the dirac function. See [Section 6.1, 1] Kahl, K., Kintscher, N. Automated local Fourier analysis (ALFA). Bit Numer Math (2020). https://doi.org/10.1007/s10543-019-00797-w
ALFA.gallery.graphene_tight_binding
— Methodgraphene_tight_binding(;t = nothing, T=Float64)
Creates a CrystalOperator corresponding to the tight-binding Hamiltonian of graphene. The vector t should contain the hopping parameter. See [Section 6.1, 1] Kahl, K., Kintscher, N. Automated local Fourier analysis (ALFA). Bit Numer Math (2020). https://doi.org/10.1007/s10543-019-00797-w